Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 3, 2026
-
Abstract National nutrient inventories provide surplus phosphorus (P) estimates derived from county‐scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large‐scale soil testing programs and inventory‐based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory‐measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas:r = 0.65, North Carolina:r = 0.45, Oklahoma:r = 0.52) and Spearman correlation coefficients (Arkansas:ρ = 0.57, North Carolina:ρ = 0.28, and Oklahoma:ρ = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location‐specific factors influence the strength of the relationship.more » « less
-
Today’s challenges with sustainability are driven by complexity, lack necessary information, resist straightforward solutions, span multiple scales, and encompass diverse or sometimes conflicting perspectives. To tackle these issues effectively, research organizations need tools that support and accelerate the integration of disciplinary knowledge across both natural and social sciences so that they can explore and execute workable solutions. Boundary objects are tools that can bring diverse perspectives together through a shared point of focus that is meaningful across different groups and perspectives, enhancing communication between them. Here, we introduce a framework to develop Triple Bottom Line Scenario Sites (TBL Sites) as “convergence” boundary objects and intervention testbeds to support a holistic approach to sustainability research within multidisciplinary and multi-institutional organizations. We describe four key criteria used to identify a potential TBL Site: (1) proximity to researchers, (2) a bounded geographic location encompassing a particular ecosystem, (3) an integrated stakeholder network, and (4) access to existing resources. We explain how TBL Sites may be used to assess research impacts on environmental, economic, and social sustainability goals. Finally, we provide examples of aquatic, agricultural, and urban TBL Sites used by the Science and Technologies for Phosphorus Sustainability (STEPS) Center, demonstrating how these boundary objects facilitate convergence across a large multidisciplinary research team to tackle sustainable phosphorus management.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
